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APPENDIX G  ESTABLISHING MQOS FOR MEASUREMENT 

UNCERTAINTY, MDCs AND MQCs 
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G.1 Establishing MQOs  

This section provides the rationale and guidance for establishing project-specific MQOs for 

controlling σM.  This control is achieved by establishing a desired maximum measurement 

method uncertainty at the upper boundary of the gray region.  This control also will assist in both 

the measurement method selection process and in the evaluation of measurement data.  

Approaches applicable to several situations are detailed below.  

Table G.1  Notation for Section G.1 

Symbol Definition Formula or reference Type 
α Probability of a Type I 

decision error 
 Chosen during DQO 

process 
β The probability of a 

Type II decision error 
 Chosen during DQO 

process 
Δ Width of the gray 

region 
(UBGR-LBGR) Chosen during DQO 

process 
φMR Required relative 

method uncertainty 
above the UBGR 

 uMR / UBGR Chosen during DQO 
process 

SC. The critical value of the 
net instrument signal 
(e.g., net count) 

Calculation of SC requires the choice of a 
significance level for the test.  The significance 
level is a specified upper bound for the 
probability, α, of a Type I error.  The 
significance level is usually chosen to be 0.05.   

If a measured value 
exceeds the critical value, 
a decision is made that 
radiation or radioactivity 
has been detected 

σ The total standard 
deviation of the data 

(σS
2 +  σM

2)½   Theoretical population 
parameter 

σS Standard deviation of 
the concentration in the 
sampled population 

 Theoretical population 
parameter 

σM Standard deviation of 
the measurement 
method 

 Theoretical population 
parameter 

uMR Required method 
uncertainty at and 
below the UBGR 

Upper bound to the value of σM  Chosen during DQO 
process 

2
cu (y) Combined variance of y Uncertainty propagation  

uc(y) Combined standard 
uncertainty of y. 

Uncertainty propagation  

z1–α  
(z1–β) 

1-α (or 1-β) quantile of 
a standard normal 
distribution function 

Table of Standard normal distribution. 
 

Theoretical 
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G.1.1 Developing a Requirement for Measurement Method Uncertainty For MARSSIM-

Type surveys 
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When, as in MARSSIM-Type surveys, a decision is to be made about the mean of a sampled 

population, generally the average of a set of measurements on a survey unit is compared to the 

disposition criterion.  

The total variance of the data, σ2, is the sum of two components 

  (G-1) 
222
SM σσσ +=

Where: 

Mσ = measurement method variance (M = “measurement”), and  18 

2
Sσ = variance of the radionuclide concentration or activity concentration in the 

sampled population (S = “sampling”).   
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The spatial and temporal distribution of the concentration, the extent of the survey unit, the 

physical sizes of the measured material, and the choice of measurement locations may affect the 

sampling standard deviation, σS.  The measurement standard deviation, σM , is affected by the 

measurement methods.  The value of σM is estimated in MARSAME by the combined standard 

uncertainty of a measured value for a measurement of material whose concentration equals the 

hypothesized population mean concentration.  The calculation of measurement uncertainties is 

covered in Section 5.6. 

Four cases are considered below where target values for σM can be suggested depending on what 

is known about σS.  Cases 1 and 2 treat the desired overall objective of keeping ∆/σ ≈ 3 or higher.  

When this is not possible, Cases 3 and 4 treat the less desirable alternative of attempting to 

prevent ∆/σ from going lower than 1. 

Case 1:  σS is known relative to ∆ / 3 

Generally, it is easier to control σM than σS.  If σS is known (approximately), a target value for σM 

can be determined.   
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Case 1a: σS ≤ ∆ / 3    35 

If σS ≤ ∆ / 3, then a value of σM no greater than 22 )9/( Sσ−Δ  ensures that σ ≤ ∆ / 3, 

because we have , as desired. 
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22249 

2

2 2 2 2 2 2 2( / 9 ) / 9M S S Sσ σ σ σ σ= + ≤ Δ − + = Δ

Case 1b: σS > ∆ / 3 

If σS > ∆ / 3, the requirement that the total σ be less than ∆/3 cannot be met regardless of 

σM.  In this case, it is sufficient to make σM negligible in comparison to σS.  Generally, σM 

can be considered negligible in comparison to σS if it is no greater than  σS/3. 

Case 2: σS is not known relative to ∆ / 3 

Often one needs a method for choosing σM in the absence of specific information about σS.  Since 

it is desirable to have σ ≤ ∆ / 3, this condition is adopted as a primary requirement.  Assume for 

the moment that σS is large.  Then σM should be made negligible by comparison.  As mentioned 

above, σM can be considered negligible if it is no greater than σS/3.  When this condition is met, 

further reduction of σM has little effect on σ and therefore is usually not cost-effective.  So, the 

inequality σM ≤ σS/3 is adopted as a secondary requirement. 

Starting with the definition  and substituting the secondary requirement σSM σσσ += M ≤ σS/3 

we get 2 2 29 10M M50 Mσ σ σ σ≥ + = , thus 

 
10
σσ ≤M  (G-2) 51 

Substituting the primary requirement that ∆/σ ≥ 3  (i.e., σ ≤ ∆ / 3) we get / 3
10 10M
σσ Δ

≤ ≤ , thus 52 

 103
Δ

≤Mσ
 (G-3) 53 

54 Or approximately 

 10
Δ

≤Mσ
 (G-4) 55 
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The required upper bound for the standard deviation σM will be denoted by σMR.  MARSAME 

recommends the equation 

56 
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 10
Δ

=MRσ
 (G-5) 58 
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by default as a requirement when σS is unknown and a decision is to be made about the mean of a 

sampled population. 

This upper bound was derived from the assumption that σS was large, but it also ensures that the 

primary requirement σ ≤ ∆ / 3 (i.e., ∆ /σ ≥ 3) will be met if σS is small.  When the measurement 

standard deviation σM is less than σMR, the primary requirement will be met unless the sampling 

variance, , is so large that  is negligible by comparison, in which case little benefit can be 

obtained from further reduction of σ

2
Sσ 2

Mσ

M. 

It may be that the primary requirement that ∆/σ be at least 3 is not achievable.  Suppose that the 

primary requirement is relaxed to achieving ∆/σ at least 1 (i.e., σ ≤ ∆).  This leads to 

consideration of: 

Case 3: σS is known relative to ∆ 

As in Case 1, it is generally easier to control σM than σS.  If σS is known (approximately), a target 

value for σM can be determined.   

Case 3a: σS ≤ ∆     

If σS ≤ ∆, then a value of σM no greater than 2
S
2σΔ −  ensures that σ ≤ ∆, because we have 

as desired. 
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2 2 2 2 2 2( )M S S Sσ σ σ σ σ= + ≤ Δ − + = Δ

Case 3b: σS > ∆  

If σS > ∆, the requirement that the total σ be less than ∆ cannot be met regardless of σM.  

In this case, it is sufficient to make σM negligible in comparison to σS.  Generally, σM can 

be considered negligible if it is no greater than σS/3. 
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Case 4: σS is not known relative to ∆  79 

80 

81 
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2

Suppose σ ≤ ∆ is adopted as the primary requirement.  As in Case 2, if σS is large then σM should 

be made negligible by comparison.  As mentioned above, σM can be considered negligible if it is 

no greater than σS/3.  When this condition is met, further reduction of σM has little effect on σ and 

therefore is usually not cost-effective.  So, the inequality σM ≤ σS/3 is adopted as a secondary 

requirement. 

Starting with the definition  and substituting the secondary requirement σ222
SM σσσ += M ≤ σS / 3 

we get 2 2 29 10M M Mσ σ σ σ≥ + = , thus 86 

 
10
σσ ≤M   87 

Substituting the primary requirement that ∆/σ ≥ 1  (i.e., σ ≤ ∆) we get 
10 10M
σσ Δ

≤ ≤ , thus 88 

 
310
Δ

≈
Δ

≤Mσ   89 
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G.1.2 Developing a Requirement for Measurement Method Uncertainty When Decisions 

Are to Be Made About Individual Items 

When decisions are to be made about individual items, the total variance of the data equals the 

measurement variance, , and the data distribution in most instances should be approximately 

normal.  The decision in this case may be made by comparing the measured concentration, x, 

plus or minus a multiple of its combined standard uncertainty, to the action level.  The combined 

standard uncertainty, u

2
Mσ

c(x), is assumed to be an estimate of the true standard deviation of the 

measurement process as applied to the item being measured; so, the multiplier of uc(x) equals  

z1–α, the (1 – α)-quantile of the standard normal distribution (see MARLAP appendix C). 

Alternatively, if AL = 0, so that any detectable amount of radioactivity is of concern, the 

decision may involve comparing the net instrument signal (e.g., count rate)  to the critical value 

of the concentration, SC, as defined in Section 5.7.1.  
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Two cases are considered below where target values for σM can be suggested depending on what 

is known about the width of the gray region and the desired Type I and Type II decision error 

rates.  Case 5 is for Scenario A, and Case 6 is for Scenario B. 
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Case 5:  Suppose the null hypothesis is X ≥ AL (see Scenario A in Chapter 4), so that the action 

level is the upper bound of the gray region.  Given the measurement variance , only a 

measured result that is less than (UBGR – z

2
Mσ

1–ασM) will be judged to be clearly less than the action 

level.  Then the desired power of the test 1 – β is achieved at the lower bound of the gray region 

only if the LBGR ≤ UBGR – z1–ασM – z1–βσM.  Algebraic manipulation transforms this 

requirement to 

 βαβα

σ
−−−− +

Δ
=

+
≤

1111

LBGR-UBGR
zzzzM

 (G-6) 111 

112 

113 

114 

115 

116 

Case 6:  Suppose the null hypothesis is X ≤ AL (see Scenario B in Chapter 4), so that the action 

level is the lower bound of the gray region.  In this case, only a measured result that is greater 

than LBGR + z1–ασM will be judged to be clearly greater than the action level.  The desired power 

of the test 1 – β is achieved at the upper bound of the gray region only if the UBGR ≥ LBGR + 

z1–ασM + z1–βσM.  Algebraic manipulation transforms this requirement to: 

βαβα

σ
−−−− +

Δ
=

+
≤

1111

LBGR-UBGR
zzzzM  117 

So, in either Scenario A or Scenario B, the requirement remains that: 118 

 βα

σ
−− +

Δ
≤

11 zzM

 (G-7) 119 

120 Therefore, MARSAME uses the equation: 

 βα

σ
−− +

Δ
==

11 zz
u MRMR

 (G-8) 121 

122 

123 

as an MQO for method uncertainty when decisions are to be made about individual items or 

locations and not about population parameters. 
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If both α and β are at least 0.05, one may use the value uMR = 0.3∆. 124 

125 

126 

127 

The recommended value of uMR is based on the assumption that any known bias in the 

measurement process has been corrected and that any remaining bias is well less than a third of 

the method uncertainty.   
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G.2 Uncertainty Calculation 128 

129 Table G.2  Notation for Section G.2 

Symbol Definition Formula or reference Type 
a Half-width of a 

bounded probability 
distribution 

Type B evaluation of uncertainty Estimated 

ci
 

Sensitivity 
coefficient 

∂f / ∂xi , the partial derivative of f with respect to 
xi  

Evaluated at the 
measured values 
x1,x2,…,xN

1 2( , , , )Nf x x xK  The calculated value 
of the output quantity 
from measurable 
input quantities for a 
particular 
measurement 

1 2( , , , )Ny f x x x= K  Experimental 

1 2( , , , )Nf X X XK  Model equation 
expressing the 
mathematical 
relationship,  
between the 
measurand, Y and the 
input quantities Xi. 

1 2( , , , )NY f X X X= K  Theoretical 

k Coverage factor for 
expanded uncertainty 

Numerical factor used as a multiplier of the 
combined standard uncertainty in order to obtain 
an expanded uncertainty 

Chosen during 
DQO process 

p Coverage probability 
for expanded 
uncertainty 

Probability that the interval surrounding the result 
of a measurement determined by the expanded 
uncertainty will contain the value of the 
measurand 

Chosen during 
DQO process 

r(xi,xj) Correlation 
coefficient for two 
input estimates, xi 
and xj, 

u(xi,xj) / (u(xi) u(xj)) 
 

Experimental 

( )is x  Sample standard 
deviation of the input 
estimate xi  

2

,
1

1( ) ( )
( 1)

n

i i
k

k is x x
n =

= −
− ∑ x  Experimental  

( )iu x  Type B standard 
uncertainty of the 
input estimate xi  

 Estimated 

ui(y)  Component of the 
combined standard 
uncertainty uc(y) 
generated by the 
standard uncertainty 
of the input estimate 
xi, u(xi) 

ui(y) = ci ( )iu x  Estimated 

uc(y) Combined standard 
uncertainty of y. 

Uncertainty propagation  

2
cu (y) Combined variance 

of y 
Uncertainty propagation  
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Table G.2 Notation for Section G.2 (continued) 130 

Symbol Definition Formula or reference Type 
U 
 

Expanded uncertainty 
 

“Defining an interval about the result of a 
measurement that may be expected to encompass 
a large fraction of values that could reasonably be 
attributed to the measurand” (GUM) 

 

u(xi,xj) Covariance of two input 
estimates, xi and xj, 

 Experimental 

uc(y)/ y Relative combined 
standard uncertainty of 
the output quantity for a 
particular measurement 

 Experimental 

u (xi) /xi Relative standard 
uncertainty of a nonzero 
input estimate xi for a 
particular measurement 

 Experimental 

1 2, , , nw w wK  input quantities 
appearing in the 
numerator of 

1 2( , , , )Ny f x x x= K  

See below 1 2, , , mz z zK  

1 2, , , NX X XK  Measurable input 
quantities 

 Theoretical 

1 2, , , Nx x xK  Estimates of the 
measurable input 
quantities for a 
particular measurement 

 Experimental 

Y The output quantity or 
measurand 

 Theoretical 

y Estimate of the output 
quantity for a particular 
measurement 

 Experimental 

1 2, , , mz z zK  input quantities 
appearing in the 
denominator of 

1 2( , , , )Ny f x x x= K  

N=n+m  

G.2.1 Procedures for Evaluating Uncertainty 131 

132 

133 

134 

135 

The usual eight steps for evaluating and reporting the uncertainty of a measurement are 

summarized in the following subsections (adapted from Chapter 8 of the GUM): 

G.2.1.1 Identify the Measurand, Y, and all the Input Quantities, Xi, for the Mathematical Model 

Include all quantities whose variability or uncertainty could have a potentially significant effect 

on the result.  Express the mathematical relationship, 1 2( , , , )NY f X X X= K , between the 

measurand and the input quantities. 

136 

137 

MARSAME G-9 December 2006 



  Establishing MQOs for Measurement Uncertainty, MDCs and MQCs 

The procedure for assessing the uncertainty of a measurement begins with listing all significant 

sources of uncertainty in the measurement process.  A good place to begin is with the input 

quantities’ mathematical model .  When an effect in the measurement 

process that is not explicitly represented by an input quantity has been identified and quantified, 

an additional quantity should be included in the mathematical measurement model to correct for 

it.  The quantity, called a correction (additive with a nominal value of zero) or correction factor 

(multiplicative with a nominal value of one), will have an uncertainty that should also be 

evaluated and propagated.  Each uncertainty that is potentially significant should be evaluated 

quantitatively.   
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157 
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161 

162 

163 

164 

1 2( , , , )NY f X X X= K

G.2.1.2 Determine an Estimate, xi, of the Value of Each Input Quantity, Xi  

This involves simply determining for the particular measurement at hand, the specific value, xi, 

that should be substituted for the input quantity Xi in the mathematical relationship, 

. 1 2( , , , )NY f X X X= K

G.2.1.3 Evaluate the Standard Uncertainty, u(xi), for Each Input Estimate, xi, Using a Type A 

Method, a Type B Method, or a Combination of Both  

Methods for evaluating standard uncertainties are classified as either “Type A” or “Type B” 

(NIST, 1994).  Both types of uncertainty need to be taken into consideration.  A Type A 

evaluation of an uncertainty uses a series of measurements to estimate the standard deviation 

empirically.  Any other method of evaluating an uncertainty is a Type B method.  A Type B 

evaluation of standard uncertainty is usually based on scientific judgment using all the relevant 

information available, which may include:  

• Previous measurement data, 

• Experience with, or general knowledge of, the behavior and property of relevant 

materials and instruments, 

• Manufacturer’s specifications, 

• Data provided in calibration and other reports, and 

• Uncertainties assigned to reference data taken from handbooks. 
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The Type A standard uncertainty of the input estimate xi is defined to be the experimental 

standard deviation of the mean: 

165 

166 

 
2

,
1

1( ) ( ) ( ) /
( 1)

n

i i k i
k

u x x x s x n
n n =

= − =
− ∑ i167  (G-9) 

Example 1: Type A uncertainty calculation using equation G-9: 168 

Ten independent one-minute measurements of the counts from a check source Xi were made with 169 

170 a digital survey meter, yielding the values: 12,148, 12,067, 12,207, 12,232, 12,284, 12,129, 

171 11,862, 11,955, 12,044, and 12,150. 

The estimated value xi is the arithmetic mean of the values Xi,k. 172 

,
1

1 121078 12107.8
10

n

i i i k
k

x X x
n =

= = =∑  173 

The standard uncertainty of xi is 174 

10
2 2

, ,
1 1

1 1( ) ( ) ( 12107.8)
( 1) 10(10 1)

n

i i k i i k
k k

u x x x x
n n = =

= − = −
− −∑ ∑  175 

16628.84 128.95= =  176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

There are other Type A methods, but all are based on repeated measurements. 

Any evaluation of standard uncertainty that is not a Type A evaluation is a Type B evaluation.  

Sometimes a Type B evaluation of uncertainty involves making a best guess based on all 

available information and professional judgment.  Despite the reluctance to make this kind of 

evaluation, it is almost always better to make an informed guess about an uncertainty component 

than to ignore it completely. 

There are many ways to perform Type B evaluations of standard uncertainty.  One example of a 

Type B method is the estimation of counting uncertainty using the square root of the observed 

counts.  If the observed count is N, when the Poisson approximation is used, the standard 

uncertainty of N may be evaluated as u(N) = N .  For example, the standard uncertainty of the 186 
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first value in Example 1, 12,148, could be estimated as 12148 110.218= .  When N may be 

very small or even zero, the equation u(N) = 

187 

1N +  may be preferable. 188 

189 

190 

191 

192 

Another Type B evaluation of an uncertainty u(x) consists of estimating an upper bound, a, for 

the magnitude of the error of x based on professional judgment and the best available 

information.  If nothing else is known about the distribution of the measured result, then after a 

is estimated, the standard uncertainty may be calculated using the equation 

 
3
 )( axu = , (G-10) 193 

194 

195 

196 

197 

198 

which is the standard deviation of a random variable uniformly distributed over the interval  

(x - a, x + a).  The variable a is called the half-width of the interval.  Suppose in Example 1, all 

that was given was the observed range of the data from an analog survey meter dial, i.e., from 

11,862 to 12,284, a difference of 422.  If it was assumed that the data came from a uniform 

distribution across this range, then the average is (11,862+12,284)/2 = 12,073, and an estimate of 

the standard uncertainty would be 211( ) 121.821
3

u x = = . 199 

200 

201 

202 

203 

Given the same information on the range, if values near the middle of the range were considered 

more likely than those near the endpoints, a triangular distribution may be more appropriate.  

The mean would be the same as above, 12,073.  However the standard uncertainty then be 

calculated using the equation 

 
 211 ( ) 86.14
6 6

au x = = =  (G-11) 204 

205 

206 

207 

208 

which is the standard deviation of a random variable with a triangular distribution over the 

interval (x - a, x + a). 

When the estimate of an input quantity is taken from an external source, such as a book or a 

calibration certificate, the stated standard uncertainty can be used. 
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G.2.1.4 Evaluate the Covariances, u(xi,xj), for all Pairs of Input Estimates with Potentially 

Significant Correlations 

209 

210 

211 A Type A evaluation of the covariance of the input estimates xi = and xj = is 

 )()(
)1(

1),( ,
1

, jkj

n

k
ikiji xxxx

nn
xxu −−

−
= ∑

=

 (G-12) 212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

An evaluation of variances and covariances of quantities determined by the method of least 

squares may also be a Type A evaluation.  Evaluation of the covariance of two input estimates, xi 

and xj, whose uncertainties are evaluated by Type B methods may require expert judgment.  In 

such cases it may be simpler to estimate the correlation coefficient, r(xi,xj) =  [u(xi,xj) /u(xi)⋅u(xj)], 

first and then multiply it by the standard uncertainties, u(xi) and u(xj) to obtain the covariance, 

u(xi,xj). 

A covariance calculation is demonstrated in Example 2 in Section G.2.2. 

G.2.1.5 Calculate the Estimate, y, of the Measurand from the Relationship y = f(x1,x2,…,xN) 

This involves simply substituting, for the particular measurement at hand, the specific values of 

xi for the input quantity Xi into the mathematical relationship, Y = f(X1,X2,…,XN), and calculating 

the result y = f(x1,x2,…,xN).   

G.2.1.6 Determine the Combined Standard Uncertainty, uc(y), of the Estimate, y 

The combined standard uncertainty of y is obtained using the following formula: 

 
),(2)()(

1

1 1

2

1

2
ji

N

i

N

ij ji
i

N

i i
c xxu

x
f

x
fxu

x
fyu ∑∑∑

−

= +== ∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
2

226 

227 

228 

229 

230 

231 

 (G-13) 

Here u2(xi) denotes the estimated variance of xi, or the square of its standard uncertainty; u(xi,xj) 

denotes the estimated covariance of xi and xj; ∂f / ∂xi (or ∂y / ∂xi) denotes the partial derivative of 

f with respect to xi evaluated at the measured values x1,x2,…,xN; and (y) denotes the combined 

variance of y, whose positive square root, uc(y), is the combined standard uncertainty of y.  The 

partial derivatives, ∂f / ∂x

2
cu

i, are called sensitivity coefficients, usually denoted ci.  The sensitivity 
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coefficient measures how much f changes when xi changes.  Equation G-13 is called the “law of 

propagation of uncertainty” in the GUM (ISO 1995). 

232 

233 

234 If the input estimates x1,x2,…,xN are uncorrelated, the uncertainty propagation formula reduces to 

 
)()( 2

2

1

2
i

N

i i
c xu

x
fyu ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
 (G-14) 235 

236 

237 

Suppose the values x1,x2,…,xN are composed of two groups w1,w2,…,wn and z1,z2,…,zm with  

N=n+m. If the w’s and the z’s are uncorrelated and nonzero, the combined standard uncertainty 

of y = 1 2

1 2

n

m

w w w
z z z

K

K
may be calculated from the formula: 238 

 
2 22 2 2 2

2 2 1 2 1 2
2 2 2 2 2 2
1 2 1 2

( ) ( )( ) ( ) ( ) ( )( ) n m
c

n m

u w u zu w u w u z u zu y y
w w w z z z

⎛ ⎞
= + + + + + + +⎜ ⎟

⎝ ⎠
K K  (G-15) 239 

240 

241 

The symbols z1,z2,…,zm have been introduced simply to differentiate those values appearing in 

the denominator of the model equation from the w1,w2,…,wn appearing in the numerator.  

If y = 1 2

1 2

( , , , )n

m

f w w w
z z z

K

K
, where f is some specified function of w1,w2,…,wn, all the zi are nonzero,  242 

243 and all the input estimates are uncorrelated.  Then: 

 
2 22 2

2 21 2 1 2
2 2 2

1 2 1 2

( ( , , , )) ( )( ) ( )( ) c n
c

m m

u f w w w u zu z u zu y y
z z z z z z

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠

K
K

K
m+244 

245 

246 

247 

248 

249 

 (G-16) 

An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to 

propagate not the uncertainties of input estimates but their distributions.  Given assumed 

distributions for the input estimates, the method provides an approximate distribution for the 

output estimate, from which the combined standard uncertainty or an uncertainty interval may be 

derived. 
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G.2.1.7 Optionally Multiply uc(y) by a Coverage Factor k to Obtain the Expanded Uncertainty 

U such that the Interval [y - U, y + U] can be Expected to Contain the Value of the 

Measurand with a Specified Probability 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

The specified probability, p, is called the level of confidence or the coverage probability and is 

generally only an approximation of the true probability of coverage.  When the distribution of the 

measured result is approximately normal, the coverage factor is often chosen to be k = 2 for a 

coverage probability of approximately 95%.  An expanded uncertainty calculated with k = 2 or 3 

is sometimes informally called a “two-sigma” or “three-sigma” uncertainty, respectively.  The 

GUM recommends the use of coverage factors in the 2 to 3 range when the combined standard 

uncertainty represents a good estimate of the true standard deviation.  Attachment 19D of 

MARLAP describes a more general procedure for calculating the coverage factor that gives a 

desired coverage probability p when there is substantial uncertainty in the value of uc(y). 

G.2.1.8 Report the Result as y ± U with the Unit of Measurement 

At a minimum, state the coverage factor used to compute U and the estimated coverage 

probability.  Alternatively, report the result, y, and its combined standard uncertainty, uc(y), with 

the unit of measurement. 

The number of significant figures that should be reported for the result of a measurement 

depends on the uncertainty of the result.  A common convention, recommended by MARLAP, is 

to round the uncertainty (standard uncertainty or expanded uncertainty) to two significant figures 

and to report both the measured value and the uncertainty to the same number of decimal places.  

Only final results should be rounded in this manner.  Intermediate results in a series of 

calculation steps should be carried through all steps with additional figures to prevent 

unnecessary round-off errors.  Additional figures are also recommended when the data are stored 

electronically.  Rounding should be performed only when the result is reported. 

All results, whether positive, negative, or zero, should be reported as obtained, together with 274 

their uncertainties. 275 

276 

277 

A measured value y of a quantity Y that is known to be positive may be so far below zero that it 

indicates a possible blunder, procedural failure, or other quality control problem.  Usually, if 
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y + 3uc(y) < 0, the result may be invalid.  For example, if y = -10 and uc(y) = 1, this would imply 

that Y is negative with high probability, which is known to be impossible.  However, if y = -1 

and u

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

c(y) = 1, the expanded uncertainty covers positive values with reasonable probability.  The 

accuracy of the uncertainty estimate uc(y) must be considered in evaluating such results, 

especially in cases where only few counts are observed during the measurement and counting 

uncertainty is the dominant component of uc(y).  (See MARLAP Chapter 18 and Attachment 

19D). 

G.2.2 Examples of Some Parameters that Contribute to Uncertainty 

The sources of uncertainty described in the following sections, drawn from MARLAP Section 

19.5, should be considered. 

G.2.2.1 Instrument Background 

Single-channel background measurements are usually assumed to follow the Poisson model, in 

which the uncertainty in the number of counts obtained, N, is given by N .  There may be 

effects that increase the variance beyond what the model predicts.  For example, cosmic radiation 

and other natural sources of instrument background may vary between measurements, the 

instrument may become contaminated, or the instrument may simply be unstable.  Generally, the 

variance of the observed background is somewhat greater than the Poisson counting variance, 

although for certain types of instruments, the Poisson model may overestimate the background 

variance (Currie et al., 1998).  If the background does not closely follow the Poisson model, its 

variance should be estimated by repeated measurements. 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

The “instrument background,” or “instrument blank,” is usually measured under the same 

conditions that will be encountered in the field.  Ambient background sources should be 

minimized, and kept constant during the measurements of M&E.  Periodic checks should be 

made to ensure that the instrument has not picked up additional radioactivity from the M&E 

during the measurements.  If the background drifts or varies nonrandomly over time (i.e., is 

nonstationary), it is important to minimize the consequences of the drift by performing frequent 

background measurements. 
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If repeated measurements demonstrate that the background level is stable, then the average, x , 

the results of n similar measurements performed over a period of time may give the best estimate 

of the background.  In this case, if all measurements have the same duration, the experimental 

standard deviation of the mean,

305 

306 

307 

( )s x , is also a good estimate of the measurement uncertainty.  

Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson estimate, 

which equals the square root of the summed counts, divided by the number of measurements,  

308 

309 

310 

nx x
n = n311  but the experimental standard deviation may be used when the Poisson  

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

assumption is invalid.  It is always wise to compare the value of ( )s x  to the value of the Poisson 

uncertainty when possible to identify any discrepancies. 

G.2.2.2 Counting Efficiency 

The counting efficiency for a measurement of radioactivity (usually defined as the detection 

probability for a particle or photon of interest emitted by the source) may depend on many 

factors, including source geometry, placement, composition, density, activity, radiation type and 

energy and other instrument-specific factors.  The estimated efficiency is sometimes calculated 

explicitly as a function of such variables (in gamma-ray spectroscopy, for example).  In other 

cases a single measured value is used (e.g., alpha-particle spectrometry).  If an efficiency 

function is used, the uncertainties of the input estimates, including those for both calibration 

parameters and sample-specific quantities, must be propagated to obtain the combined standard 

uncertainty of the estimated efficiency.  Calibration parameters tend to be correlated; so, 

estimated covariances must also be included.  If a single value is used instead of a function, the 

standard uncertainty of the value is determined when the value is measured.  An example of the 

calculation of the uncertainty in counting efficiency is given in Example 2. 

Example 2;  A radiation counter is calibrated, taking steps to ensure that the geometry of the 327 

328 source position, orientation of the source, pressure, temperature, relative humidity, and other 

factors that could contribute to uncertainty are controlled, as described below: 329 

The standard source is counted 15 times on the instrument for 300 s. 330 

The radionuclide is long-lived; so, no decay corrections are needed.  The uncertainties of the 331 

count times are assumed to be negligible. 332 
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Within the range of linearity of the instrument, the mathematical model for the calibration is: 333 

,

1

( / ) ( /1 n
S i S B B

i s

N t N t
n a

ε
=

)−
= ∑   (G-17) 334 

335 Where: 

ε is the counting efficiency, 336 

n is the number times the source is counted (15), 337 

NS,i is the gross count observed during the ith measurement of the source, 338 

tS is the source count time (300 s), 339 

NB is the observed background count (87), 340 

tB is the background count time (6,000 s), 341 B

aS is the activity of the standard source (150.0 Bq). The standard uncertainty of the source, 342 

343 2.0 Bq, was given by the certificate for the source. 

The combined standard uncertainty of ε can be evaluated using Equation G-13.  For the purpose 344 

345 of uncertainty evaluation, it is convenient to rewrite the model as: 

sa
R

=ε  346 

Where: 347 

∑
=

=
n

i
iR

n
R

1

1  and ,( / ) ( /i S i S B )BR N t N t= − , i = 1,2,…,n 348 

The values Ri and their average, R , are estimates of the count rate produced by the standard, 349 

while R /aS is an estimate of the count rate produced by 1 Bq of activity.  The standard 350 

uncertainty of R  can be evaluated experimentally from the 15 repeated measurements: 351 

2 2

1

1( ) ( ) ( )
( 1)

n

i
i

u R s R R R
n n =

= = −
− ∑ 2 .  Since only one background measurement was made, the 352 

input estimates Ri are correlated with each other.  The uncertainty of NB, ( ) 87Bu N = , using a 353 

354 Type B evaluation based on an assumption of a Poisson distribution for the number of 

background counts.   355 
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The covariance between Ri and Rj, for i ≠ j, may be estimated as 356 

22
2 2

2 2

( )1 1 87( , ) ( ) ( ) 2 10
6000

ji B
i j B B

B B B B B

RR u Nu R R u N u N
N N t t t

−∂∂ − −
= = = = ≅
∂ ∂

6×  357 

However, the correlation is negligible here because the uncertainty of the background count, NB, 358 

is much smaller than the uncertainty of each source count, NS,i.  So, the correlation of the input 359 

estimates Ri will be approximated as zero (i.e., treated as if they were uncorrelated), and the 360 

361 correlation terms dropped from Equation G-13.  This means the evaluation used to calculate the 

combined standard uncertainty of ε can proceed using equation G-14:  362 

2
2 2

1

( ) ( )
N

c i
i i

fu y u x
x=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠
∑ , so since

sa
R

=ε , 363 

2 2

22
2 2 2 2

2

( ) ( )
1( ) ( ) ( ) ( ) ( )s s

c s
s s s

R R
a a Ru u R u a u R
R a a a

ε

⎛ ⎞ ⎛ ⎞
∂ ∂⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎛ ⎞ −⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2
su a  364 

22
2

2

( )( ) s

s s

u au R
a a

ε
⎛ ⎞ ⎛

= +⎜ ⎟ ⎜
⎝ ⎠ ⎝

2

⎞
⎟
⎠

. Therefore, 
22

2
2 2

( )( )( ) S
c

S S

u au Ru
a a

ε ε= +  365 

Assume the following data were obtained for the 15 separate counts of the calibration source. 366 

Count Number, i Gross count, NS,i Ri (s-1) 

1 18,375 61.236 

2 18,644 62.132 

3 18,954 63.166 

4 19,249 64.149 

5 19,011 63.356 

6 18,936 63.106 

7 18,537 61.776 

8 18,733 62.429 

9 18,812 62.692 

10 18,546 61.806 
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11 18,810 62.686 

12 19,273 64.229 

13 18,893 62.962 

14 18,803 62.662 

15 18,280 60.919 

Average, R  (s-1) 62.6202 

Experimental standard deviation, s(Ri)  (s-1) 0.9483 

Experimental standard deviation of the mean, s ( )R  (s-1) 0.2449 

Then the estimated counting efficiency is: 367 

162.6202 s 0.4176
150.0 Bqs

R
a

ε
−

= = =  368 

And the combined standard uncertainty of ε is given by 369 

1 2 2
2

2 2

(0.2449 s ) (2.0 Bq)( ) 0.4176 0.005802
(150.0 Bq) (150.0 Bq)cu ε

−

= + × =  370 

Which may be rounded to 0.0058. 371 

372 

373 

374 

375 

376 

The true counting efficiency may vary because of variations in geometry, position and other 

influence quantities not explicitly included in the model.  These sources of uncertainty may not 

be controlled as they were in the above example.  If this is the case, the standard uncertainty of ε 
should include not only the standard uncertainty of the estimated mean, as calculated in the 

example, but also another component of uncertainty due to variations of the true efficiency 

during subsequent measurements.  The additional component may be written as εφ , where φ  is 

the coefficient of variation (i.e., the standard deviation divided by the mean) of the true 

efficiency.  Then the total uncertainty of ε is obtained by squaring the original uncertainty 

estimate, adding ε

377 

378 

379 
2φ 2, and taking the square root of the sum. 380 

 
22

2
2 2

( )( )( ) S
c

S S

u au Ru
a a

2ε ε
⎛ ⎞

= + +⎜
⎝ ⎠

φ ⎟381  (G-18) 

MARSAME G-20 December 2006 



  Establishing MQOs for Measurement Uncertainty, MDCs and MQCs 

In the example above, the experimental variance of the count rates, Ri, may be used to 

estimate

382 

φ .  Section 18B.2 of Attachment 18B of MARLAP describes an approach for estimating 

such “excess” variance in a series of measurements. 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

Variations in counting efficiency due to source placement should be reduced as much as possible 

through the use of positioning devices that ensure a source with a given geometry is always 

placed in the same location relative to the detector.  If such devices are not used, variations in 

source position may significantly increase the measurement uncertainty. 

Calibrating an instrument under conditions different from the conditions under which M&E 

sources are counted may lead to large uncertainties in the activity measurements.  Source 

geometry in particular tends to be an important factor for many types of radiation counters.  If 

correction factors are used, their uncertainties should be evaluated and propagated, as mentioned 

in section G.2.1.1. 

G.2.2.3 Digital Displays and Rounding 

If a measuring device has a digital display with readability1 δ, the standard uncertainty of a 

measured value is at least 32/δ , which is the variance of a random variable uniformly 

distributed over the interval (x – δ/2, x + δ/2).  Note that this is the same result as given by 

equation G-10 with a = δ/2.  This uncertainty component exists even if the instrument is 

completely stable. 

396 

397 

398 

399 

400 

401 

A similar Type B method may be used to evaluate the standard uncertainty due to computer 

round-off error.  When a value x is rounded to the nearest multiple of 10n, where n is an integer, 

the component of uncertainty generated by round-off error is )32/(10 n .  This component of 

uncertainty should be kept small in comparison to the total uncertainty of x by performing 

402 

403 

                                                 

1 Readability is the smallest difference that can still be read on a display.  For instruments with an analog indicating 

device, the readability is equal to the smallest fraction of a scale interval that can still be estimated with reasonable 

reliability or which can be determined by an auxiliary device.  For instruments with a numeric indicator (digital 

display), the readability is equal to one digital step.  

MARSAME G-21 December 2006 



  Establishing MQOs for Measurement Uncertainty, MDCs and MQCs 

404 

405 

406 

407 

rounding properly and printing with an adequate number of figures.  In a long calculation 

involving mixed operations, carry as many digits as possible through the entire set of 

calculations and then round the final result appropriately as described in MARLAP Section 

19.3.7 (MARLAP 2004). 

Example 3:  The readability of a digital survey doserate meter is 1 nGy/h.  Therefore, the 408 

minimum standard uncertainty of a measured absorbed dose rate is 1/ 2 3  = 0.29 nGy/h. 409 

410  

Example 4:  Suppose the results for Ri in Example 2 had been rounded to the nearest whole 411 

412 number before the analysis.  Then the average would be computed as 62.6 instead of 62.6202 

413 and the standard deviation would be computed as 0.9103 instead of 0.9483.  This demonstrates 

414 the effect that rounding intermediate results can have on subsequent calculations.  If this 

415 rounding to the nearest positive integer had already occurred prior to receiving the data, and the 

416 original data were no longer available, a correction for it could be made when estimating the 

combined standard uncertainty of Ri.  The component of uncertainty generated by round-off error 417 

is 1/(2 3) : 418 

2
2 1( ) 0.9103 0.9549.

2 3iu R ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

G.2.3 Example Uncertainty Calculation 

To illustrate how the uncertainty calculations are performed in practice, the following example is 

given based on that of Lewis et al. (Lewis 2005).  The calculation will be that of the combined 

standard uncertainty in the calibration of a surface contamination monitor. 

G.2.3.1 Model Equation and Sensitivity Coefficients 

Surface contamination monitors are calibrated in terms of their response to known rates of 

radioactive emissions.  In practice this is achieved by using large-area, planar sources that have a 

defined area and whose emission rates have been determined in a traceable manner.  The 

calibration is usually determined in terms of response per emission rate per unit area.  In this 
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example, the source is positioned with its active face parallel to and at a distance of 3 mm from 

the face of the detector.  The monitor detector area (50 cm

429 

430 

431 

432 

433 

2) is smaller than the area of the 

calibration source, which is a 10 cm × 10 cm layer of 14C on a thick aluminum substrate.  The 

monitor has an analog display and has a means to set the detector voltage. 

The efficiency, ε, is defined by: 

 
( )

( ) V d u bsM B f f f f
E

A
ε − × × × ×
=  (G-19) 434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

Where: 

M observed monitor reading, s-1

B background reading, s-1

E emission rate of the calibration source, s-1

A area of the active portion of the calibration source, cm2

fV plateau voltage factor, 

fd source-detector separation factor, 

fu source uniformity factor, 

fbs backscatter factor. 

The sensitivity coefficients of Equation G-19 are given by: 

 ( / )
( )V d u bsA E f f f f

M M B
ε ε∂
= × × × × =

∂ −
 (G-20) 445 

 ( / )
( )V d u bsA E f f f f

B M B
ε ε∂ −
= − × × × × =

∂ −
 (G-21) 446 

 2( )( / ) V d u bsM B A E f f f f
E E
ε ε∂ −
= − − × × × × =

∂
 (G-22) 447 

 ( )(1/ ) V d u bsM B E f f f f
A A
ε ε∂
= − × × × × =

∂
 (G-23) 448 
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M B A E f f f
f f
ε ε∂
= − × × × =
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 (G-27) 452 

453 

454 

455 

Under normal conditions, the factors fV, fd, fu and fbs are each assumed to have a value of one.  If 

the uncertainties are to be calculated in relative terms, the uncertainty equation becomes (see 

Equation G-16): 

 
2 2 22 2 2 2 22 2

V d u bf f f fC M B E A

V d u bs

M B
M B M M B B E A f f f f

σ σ σ σσ σ σ σ σ
ε

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

s456 (G-28) 

If the relative uncertainties are all expressed as percentages, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

x

x
i

σ
, where xi is an input quantity, 

then the combined standard uncertainty will be a percentage.  The relative sensitivity 

coefficients, c

457 

458 

i, are the terms multiplying each relative uncertainty term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

x

x
i

σ
 in Equation G-28.  

This approach produces relative sensitivity coefficients of unity for the last 6 terms. 

459 

460 

461 G.2.3.2 Uncertainty Components 

Monitor reading of source, M (Type A) 462 

463 

464 

465 

466 

Several techniques can be used to determine the mean observed monitor reading, M, and its 

uncertainty.  Assume a snap-shot technique is used whereby six successive, but randomly timed, 

readings are recorded, giving 350, 400, 400, 325, 350, 350 s-1.  The mean and standard deviation 

of the mean becomes 362.5 ± 12.5 s-1.  This equates to a percentage uncertainty in M of 3.45% 

and the relative sensitivity coefficient from Equation G-28, 
( )

M
M B−

, is 362.5/(362.5 – 32.5), 

which is equal to 1.10.  The distribution is assumed to be normal. 

467 

468 
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Monitor reading of background, B (Type B) 469 

470 

471 

472 

In this case, an eye-averaging technique was used whereby the highest and lowest count rates 

were recorded over a given period of time.  These count rates were 40 and 25 s-1 respectively, 

giving a mean value of 32.5 s-1.  This value is assumed to have a rectangular distribution with a 

half-width of 7.5 s-1, and an uncertainty of 7.5 / 3 4.330= , equating to a percentage uncertainty 

of  or 13%.  The relative sensitivity coefficient from Equation G-28, 

473 

474 4.330 / 32.5 0.1332=

( )
B

M B−
, is 32.5/(362.5 - 32.5), which gives a value of 0.098. 475 

Emission rate of calibration source, E (Type B) 476 

477 

478 

479 

480 

481 

482 

483 

484 

The emission rate of the source and its uncertainty were provided on the calibration certificate by 

the laboratory that calibrated the source using a windowless proportional counter.  The statement 

on the certificate was: 

“The measured value of the emission rate is  -1s13732,2 ±=E

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of 

k = 2, which provides a level of confidence of approximately 95%.  The standard uncertainty on 

E is therefore 13/2 = 6.5 s-1 or 0.24%.  Unless the certificate provides information to the 

contrary, it is assumed that the uncertainty has a normal distribution. 

Source area, A (Type B) 485 

486 

487 

488 

489 

490 

In the absence of an uncertainty statement by the manufacturer, the only information available is 

the product drawing that shows the active area dimensions to be 10 cm × 10 cm.  On the 

assumption that the outer bounds of the length, L, and the width, W, are 9.9 and 10.1 cm, the 

uncertainty of the linear dimensions may be taken to be a rectangular distribution with a half-

width of 0.1 cm.  

L = 10 and u(L) = 0.1/ 3 0.0577= .  W = 10 and u(W) = 0.1/ 3 0.0577= .  Since A = LW, we 

get , therefore 

cm

491 

492 

493 

2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) 2(10) (0.0577) 0.665858u A u LW L u W W u L= = + = =

( ) 0.816u A = 2 or 0.816%. 
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Plateau voltage factor, fV (Type B) 494 

495 

496 

497 

498 

499 

500 

501 

502 

This applies only to those instruments where voltage adjustments are possible.  If the setting is 

not checked and/or adjusted between calibrations, then this has no effect.  Changing the plateau 

voltage without performing a recalibration is not recommended.  If, however, the user is allowed 

to do this, the setting may not be returned to exactly that used during the calibration.  In this 

particular example, the slope of the response curve in this region is taken to be 10% / 50 v.  It is 

assumed that an operator is more likely to set the voltage nearer to the optimum than the 

extremes and that ± 50 v represents the range at the 100% confidence level.  Accordingly, a 

triangular distribution is assumed with a half-width of 50 v, equating to an uncertainty for the 

voltage of 50 / 6 20.4124=  and an uncertainty for the voltage factor of 20.4124(10%)/ 50 = 

4.0825%. 

503 

504 

Source-detector separation factor, fd  (Type B) 505 

506 

507 

508 

509 

510 

This effect arises from the uncertainty in mounting the calibration source exactly 3 mm from the 

detector face.  Experimental evidence has shown that, for the particular 14C source at 3 mm 

source-detector separation, the change in response was 2.6% / mm.  It is assumed that the 

deviation from the nominal 3 mm separation is no greater than 1 mm but that all values are 

equally probable between 2 and 4 mm, a rectangular distribution.  The uncertainty in the 

separation is thus1/ 3 0.5774= .  The uncertainty of the separation factor is thus 0.5774 mm × 

2.6% / mm, equal to 1.5011%.  

511 

512 

Non-uniformity of calibration source, fu (Type B) 513 

514 

515 

516 

517 

518 

519 

Large area sources may have a non-uniform activity distribution across their surfaces.  For the 
14C source, the uniformity is assumed to be better than ± 10%.  This is based on comparing 10 

cm2 sections of the source.  For a typical monitor with a detector area of 50 cm2 and a calibration 

source area of 100 cm2, a worst-case condition could be that the area under the detector has an 

activity per unit area that is 10% greater than the mean value for the whole source.  (The outer 

area correspondingly will be 10% less than mean value.)  Assuming a rectangular distribution, 

this represents an uncertainty of 10 / 3 5.774%=  for the source non-uniformity factor. 520 
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Backscatter factor, fbs (Type B) 521 

522 

523 

524 

525 

526 

527 

528 

529 

Variations in backscatter effects arise from factors such as the nature of the surface on which the 

calibration source is resting and the proximity to scattering surfaces such as walls.  This effect 

can be quite marked for photon emitters, but for 14C on aluminum substrates the effect is 

negligible. 

G.2.3.3 Uncertainty Budget 

An important part of the uncertainty analysis is to determine which factors are contributing the 

most to the overall uncertainty.  

Table G.3: Uncertainty Budget for the Efficiency Example 

Source of uncertainty Type Probability 
distribution 

Relative 
Sensitivity 
Coeffient,ci

ui(xi) 
 (%) 

ui(y)=  
ci ui(xi) 

 (%) 

 
(ui(y))2

 
(ui(y))2/Total 

 

Standard deviation of 
mean of M A Normal 1.10 3.45 3.80 14.44 0.21 

Standard deviation of 
mean of B B Rectangular 0.098 13.32 1.31 1.72 0.02 

Standard uncertainty of 
calibration source 
emission rate, E 

B Normal 1.0 0.24 0.24 0.06 0.00 

Half -width of source 
length, L and width W 
on the area A 

B 
Product of 2 
independent 
rectangular 

1.0 0.816 0.816 0.666 0.01 

Half -width of voltage 
factor, fV

B Triangular 1.0 4.08 4.08 16.65 0.24 

Half -width of source-
detector separation 
factor, fd

B Rectangular 1.0 1.50 1.50 2.25 0.03 

Half-width of 
calibration source non- 
uniformity factor, fu

B Rectangular 1.0 5.77 5.77 33.29 0.48 

Uncertainty of 
backscatter factor, fbs

B n.a. 1.0 0.0 0.0 0.00 0.00 

Combined standard 
uncertainty 

 
Normal - - - - - - 

8.31 
=

69.07  

Total= 
69.07 

0.99 

Expanded uncertainty 
(k=2) 

 
Normal - - - - - - 

2⋅8.31= 
16.6 

- - - 
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The relative sensitivity coefficients, ci, are the terms multiplying each relative uncertainty term 530 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

x

x
i

σ
 in Equation G-28. To do this, each component of uncertainty ui(y)=ci ui(xi) is squared to 

give its component of variance (u

531 

532 

533 

534 

535 

536 

537 

538 

539 

i(y))2.  These are totaled to get the total variance, in this case 

69.07.  Finally, the ratio of each component of variance to the total is computed. 

Examining the last column of the uncertainty budget table (Table G.3) shows that the major 

source of uncertainty is due to source non-uniformity (48%) followed by the voltage factor 

(24%) and the reading of the source (21%).  Thus, to decrease the overall uncertainty, attention 

should be paid to those factors first. 

G.2.3.4 Reported Result 

Using the formula above, the calibration factor in terms of emission rate becomes: 

( ) ( )
( ) (362.5 32.5) 1 1 1 1

2732
100

V d u bsM B f f f f
E

A
ε − × × × × − × × × ×
= = -1 -1 -212.1 (counts s )/(s cm )= × ×  540 

541 

542 

543 

The combined standard uncertainty is (12.1)(.0831) = 1.0056.  The reported expanded 

uncertainty will be 2.0, based on a standard uncertainty of 1.0 multiplied by a coverage factor of 

k = 2, which provides a level of confidence of approximately 95%. 
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G.3  Calculation of the Minimum Detectable Concentration 544 

545 Table G.4  Notation for Section G.3 

Symbol Definition Formula or reference Type 
ε efficiency   
F  calibration function X= F(Y)  
F−1 evaluation function Y =F−1( X ) , closely related to the 

mathematical model 
1 2( , , , )NY f X X X= K  

 

SC. Critical net signal Net signal is calculated from the gross 
signal by subtracting the estimated blank 
value and any interferences 

 

SD  Mean value of the net signal 
that gives a specified 
probability, 1−β, of yielding an 
observed signal greater than its 
critical value SC. 

  

X observable response 
variable,measureable signal 

  

xC. The critical value of the 
response variable 

Calculation of yC requires the choice of a 
significance level for the test.  The 
significance level is a specified upper 
bound for the probability, α, of a Type I 
error.  The significance level is usually 
chosen to be 0.05.   

If a measured value 
exceeds the critical 
value, a decision is 
made that radiation or 
radioactivity has been 
detected 

Y state variable, measurand   
yC Critical value of the 

concentration 
yC = F−1 (xC).    

D
D

Sy
ε

=  Minimum detectable 
concentration (MDC) 

D
D

Sy
ε

=   

G.3.1 Critical Value 546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

In the terminology of ISO 11843-1 (1997), the measured concentration is the state variable, 

denoted by Y, which represents the state of the material being analyzed.  The state variable 

usually cannot be observed directly, but it is related to an observable response variable, denoted 

by X, through a calibration function F, the mathematical relationship being written as X= F(Y).  

The response variable X is most often an instrument signal, such as the number of counts 

observed.  The inverse, Y = F−1( X ) of the calibration function is sometimes called the 

evaluation function.  The evaluation function, which gives the value of the net concentration in 

terms of the response variable, is closely related to the mathematical model 

described in Section G.2.1.1. 1 2( , , , )NY f X X X= K
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In a Scenario B detection decision, either the null or alternative hypothesis is chosen on the basis 

of the observed value of the response variable, X.  The value of X must exceed a certain threshold 

value to justify rejection of the null hypothesis and acceptance of the alternative hypothesis.  

This threshold is called the critical value of the response variable and is denoted by x

556 

557 

558 

559 

560 

561 

562 

563 

564 

565 

566 

567 

568 

569 

570 

571 

572 

573 

574 

575 

576 

577 

578 

579 

580 

                                                

C. 

The calculation of xC requires the choice of a significance level for the test.  The significance 

level is a specified upper bound for the probability, α, of a Type I error.  The significance level is 

usually chosen to be 0.05.  This means that when there is no radiation or radioactivity present 

(above background), there should be at most a 5% probability of incorrectly deciding that it is 

present. 

The critical value of the concentration, yC , is defined as the value obtained by applying the 

evaluation function, F−1, to the critical value of the response variable, xC.  Thus, yC = F−1 (xC).  

When x is the gross instrument signal, this formula typically involves subtraction of the 

background signal and division by the counting efficiency, and possibly other factors. 

A detection decision can be made by comparing the observed gross instrument signal to its 

critical value, xC, as indicated above.  However, it has become standard practice to make the 

decision by comparing the net instrument signal to its critical value, SC.  The net signal is 

calculated from the gross signal by subtracting the estimated blank value and any interferences.2  

The critical net signal, SC, is calculated from the critical gross signal, xC, by subtracting the same 

correction terms; so, in principle, either approach should lead to the same detection decision. 

Since the term “critical value” alone is ambiguous, one should specify the variable to which the 

term refers.  For example, one may discuss the critical (value of the) radionuclide concentration, 

the critical (value of the) net signal, or the critical (value of the) gross signal.  In this document, 

the signal is usually a count, and the critical value generally refers to the net count. 

The response variable is typically an instrument signal, whose mean value generally is positive 

even when there is radioactivity present (i.e., above background).  The gross signal must be 

 

2 Interference is the presence of other radiation or radioactivity that hinder the ability to analyze for the radiation or 

radioactivity of interest. 
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581 

582 

583 

584 

585 

586 

587 

588 

589 

590 

591 

592 

593 

594 

595 

596 

597 

598 

599 

600 

601 

602 

603 

604 

605 

606 

607 

608 

corrected by subtracting an estimate of the signal produced under those conditions.  See Section 

G.2.2.1 (Instrument Background). 

G.3.2 Minimum Detectable Concentration 

The minimum detectable concentration (MDC) is the minimum concentration of radiation or 

radioactivity that must be present in a sample to give a specified power, 1 − β.  It may also be 

defined as: 

• The minimum radiation or radioactivity concentration that must be present to give a 

specified probability, 1 − β, of detecting the radiation or radioactivity; or 

• The minimum radiation or radioactivity concentration that must be present to give a 

specified probability, 1 − β, of measuring a response greater than the critical value, 

leading one to conclude correctly that there is radiation or radioactivity present. 

The power of any hypothesis test is defined as the probability that the test will reject the null 

hypothesis when it is false, i.e., the correct decision.  Therefore, if the probability of a Type II 

error is denoted by β, the power is 1 − β.  In the context of radiation or radioactivity detection, 

the power of the test is the probability of correctly detecting the radiation or radioactivity 

(concluding that the radiation or radioactivity is present), which happens whenever the response 

variable exceeds its critical value.  The power depends on the concentration of the radiation or 

radioactivity and other conditions of measurement; so, one often speaks of the “power function” 

or “power curve.”  Note that the power of a test for radiation or radioactivity detection generally 

is an increasing function of the radiation or radioactivity concentration − i.e., the greater the 

radiation or radioactivity concentration the higher the probability of detecting it. 

In the context of MDC calculations, the value of β that appears in the definition, like α, is usually 

chosen to be 0.05 or is assumed to be 0.05 by default if no value is specified.  The minimum 

detectable concentration is denoted in mathematical expressions by yD.  The MDC is usually 

obtained from the minimum detectable value of the net instrument signal, SD.  SD, is defined as 

the mean value of the net signal that gives a specified probability, 1 − β, of yielding an observed 

signal greater than its critical value SC.  The relationship between the critical net signal, SC, and 

the minimum detectable net signal, SD, is shown in Figure 5.2 in Section 5.7.2. 
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609 

610 

611 

612 

613 

614 

615 

616 

617 

618 

619 

620 

621 

622 

623 

624 

The term MDC must be carefully and precisely defined to prevent confusion.  The MDC is by 

definition an estimate of the true concentration of the radiation or radioactivity required to give a 

specified high probability that the measured response will be greater than the critical value. 

The common practice of comparing a measured concentration to the MDC, instead of to the SC, 

to make a detection decision is incorrect.  If this procedure were used, then there would be only a  

a 50% chance of deciding that radioactivity was present when the concentration was actually at 

the MDC.  This is in direct contradiction to the definition of MDC.  See MARLAP Appendix B, 

Attachment B1 for a further discussion of this issue. 

Since the MDC is calculated from measured values of input quantities such as the counting 

efficiency and background level, the MDC estimate has a combined standard uncertainty, which 

in principle can be obtained by uncertainty propagation.  To avoid confusion, it may be useful to 

remember that a detection decision is usually made by comparing the instrument response to the 

critical value, and that the critical value generally does not even have the units of radiation or 

radioactivity concentration. 

G.3.3 Calculation of the Critical Value 

If the net signal is a count, then in many circumstances the uncertainty in the count can be 

estimated by a Type B evaluation using the fact that for a Poisson distribution with mean NB, the 

variance is also N

B625 

BB. Thus the uncertainty in the background count is estimated as BN  .   626 

Hence, the critical value is often an expression involving BN . 627 

628 

629 

                                                

The most commonly used approach for calculating the critical net signal, SC, is given by the 

following equation.3

 

3 This expression for the critical net count depends for its validity on the assumption of Poisson counting statistics.  

If the variance of the blank signal is affected by interferences, or background instability, then Equation 20.7 of 

MARLAP may be more appropriate. 
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 1 1S S
C B

B B

t tS z N
t tα−

⎛ ⎞
= ⎜

⎝ ⎠
+ ⎟630 

631 

 (G-29) 

Where: 

NB is the background count, B632 

633 tS is the count time for the sample, 

tB is the count time for the background, and B634 

635 z1-α is the (1 − α)-quantile of the standard normal distribution. 

Example 5:  A 6,000-second background measurement is performed on a proportional counter 636 

637 and 108 beta counts are observed.  A sample is to be counted for 3,000 s.  Estimate the critical 

638 value of the net count when α = 0.05. 

1 1S S
C B

B B

t tS z N
t tα−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 639 

countsnet 8.14
s000,6
s000,31

s000,6
s000,3108645.1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=CS  640 

If α = 0.05 and tB = tB S, equation G-29 leads to the well-known expression 2.33 BN  for the 

critical net count (Currie, 1968). 

641 

642 

643 

644 

645 

646 

When the background count is high (e.g., 100 or more) Equation G-29 works well, but at lower 

background levels it can produce a high rate of Type I errors.  Since this is a Scenario B 

hypothesis test, this means that too often a decision will be made that there is radiation or 

radioactivity present when it actually is not. 

When the mean background counts are low and tB ≠ tB647 

648 

649 

S, another approximation formula for SC 

appears to out-perform all of the other approximations reviewed in MARLAP, namely the 

Stapleton Approximation: 
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When α = 0.05, setting the parameter d = 0.4 yields the best results.  When, in addition, tB = tB651 

652 
S, 

the Stapleton approximation gives the equation 

 4.033.235.1 ++= BC NS  (G-31) 653 

654 

655 

656 

657 

658 

659 

660 

G.3.4 Calculation of the Minimum Detectable Value of the Net Instrument Signal 

The traditional method for calculating the MDC involves two steps: first calculating the 

minimum detectable value of the net instrument signal and then converting the result to a 

concentration using the mathematical measurement model. 

The minimum detectable value of the net instrument signal, denoted by SD, is defined as the 

mean value of the net signal that gives a specified probability, 1 − β, of yielding an observed 

signal greater than its critical value SC. 

The MDC may be estimated by calculating the minimum detectable value of the net instrument 661 

signal, SD, and converting the result to a concentration. 662 

663 

664 

665 

666 

Counting data rarely, if ever, follow the Poisson model exactly, but the model can be used to 

calculate SD if the variance of the background signal is approximately Poisson and a conservative 

value of the efficiency constant, ε, is used to convert SD to yD.  The equation below shows how to 

calculate SD using the Poisson model. 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++= −

−
−

B

S
SBCCD t

t
tRS

z
z

z
SS 1

42

2
1

1

2
1 β

β
β

 (G-33) 667 

668 

669 

Where: 

SC is the critical value, 

RB is the mean count rate of the blank, B

B

B
B t

NR = , 670 

NB is the background count, B671 
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tS is the count time for the test source, 672 

tB is the count time for the background, and B673 

674 

675 

z1-β is the (1 − β)-quantile of the standard normal distribution. 

When Equation G-29 is appropriate for the critical net count, and α = β, this expression for SD 

simplifies to .  If in addition, α = β = 0.05 and tCSz 22
1 +−β B = tB676 S then 

2.71 2 2.71 2(2.33 ) 2.71 4.66D C BS S N= + = + = + BN677  

Example 6  A 6,000-second background measurement on a proportional counter produces 108 678 

679 beta counts and a source is to be counted for 3,000 s.  Assume the background measurement 

gives the available estimate of the true mean background count rate, RB and use the value 0.05 680 B

681 for Type I and Type II error probabilities.  From Section,G.3.3 Example 5, the critical net count, 

SC, equals 14.8, so  2 2
1 2 1.645 2 (14.8) 32.3 net counts.D CS z Sβ−= + = + =682 

683 

684 

685 

When the Stapleton approximation (Equation G-30) is used for SC, the minimum detectable net 

count SD may be calculated using the equation G-33, but when the Poisson model is assumed, a 

better estimate is given by the equation: 
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 G-34) 686 

687 

688 

689 

This equation is the same as that recommended by ISO 11929-1 (ISO 2000) in a slightly 

different form. 

When α = β = 0.05 and tB = tS, the preceding equation becomes: 

 SBD tRS 65.441.5 +=
 (G-35) 690 

691 

692 

Consult MARLAP Chapter 20 for a discussion of the calculation of SD and yD when both Poisson 

counting statistics and other sources of variance are considered. 
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G.3.5 Calculation of the Minimum Detectable Concentration 693 

694 

695 

696 

697 

698 

699 

700 

701 

702 

703 

704 

705 

706 

The MDC is often used to compare different measurement procedures against specified 

requirements.  The calculation of the nominal MDC is complicated by the fact that some input 

quantities in the mathematical model, such as interferences, counting efficiency, and instrument 

background may vary significantly from measurement to measurement.  Because of these 

variable quantities, determining the value of the radiation or radioactivity concentration that 

corresponds to the minimum detectable value of the net instrument signal, SD, may be difficult in 

practice.  One common approach to this problem is to make conservative choices for the values 

of the variable quantities, which tend to increase the value of the MDC. 

The mean net signal, S, is usually directly proportional to Y, the true radiation or radioactivity 

concentration present.  Hence, there is a efficiency constant, ε, such that S = εY.  The constant ε 

is typically the mean value of the product of factors such as the source count time, decay-

correction factor, and counting efficiency.  Therefore, the value of the minimum detectable 

concentration, yD, is 

 D
D

Sy
ε

=  (G-36) 707 

708 

709 

710 

711 

712 

The preceding equation is only true if all sources of variability are accounted for when 

determining the distribution of the net signal, .  Note that ensuring the MDC is not 

underestimated also requires that the value of ε not be overestimated. 

Ŝ

Using any of the equations in Section G.3.4 to calculate SD is only appropriate if a conservative 

value of the efficiency constant, ε, is used when converting SD to the MDC. 

Example 7:  Consider a scenario where tB = 6,000 s, tS = 3,000 s, and RB ≈ 0.018 s-1.  Let the 713 

measurement model be ( /S B S B

S

N N t tY
t ε

−
=

)  714 

Where: 715 

Y is the activity of the radionuclide in the sample and 716 

ε is the counting efficiency  2(counts per second)/(Bq/cm )717 
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Assume the source count time, tS, has negligible variability, the counting efficiency has mean 718 

0.42 and a 10% relative combined standard uncertainty, and from Example 6, SD = 32.3 net 719 

720 counts. 

The mean minimum detectable concentration is 232.3 0.0256 Bq/cm . 
(3000)(0.42)

D
D

S

Sy
t ε

= = =  721 

Adjusting for the 10% variability in the counting efficiency, the uncertainty is (0.10) × (0.42) = 722 

0.042.  Assuming that the efficiency is normally distributed, the lower 5th percentile for ε is 723 

(0.42) - (1.645)(0.042) = 0.35, where -1.645 is the 5th percentile of a standard normal 724 

725 distribution..  Therefore a conservative estimate of the efficiency constant is ε = 0.35 and a 

726 conservative estimate of the minimum detectable concentration is: 

232.3 0.0308 Bq/cm . 
(3000)(0.35)

D
D

S

Sy
t ε

= = =  727 

728 

729 

730 

731 

732 

733 

734 

735 

An alternative procedure could be to recognize that because of the uncertainties in the input 

estimates entered into the measurement model to convert from SD to Y, that the MDC is actually 

a random variable.  Then the methods for propagation of uncertainty given in Section G.2 can be 

applied.  Using the same assumptions as above we would find that yD = 0.0256 ± 0.0051 with 

95% confidence based on a coverage factor of 2. Therefore the 95% upper confidence level for 

yD would be 0.0307 Bq. 

More conservative (higher) estimates of the MDC may be obtained by following NRC  

recommendations (NRC 1984), in which formulas for the MDC include estimated bounds for  

relative systematic error in the background determination ( BΔ| ) and the sensitivity ( AΔ| ).  The  736 

critical net count SC is increased by BΔ| NB S

B

t
t

, and the minimum detectable net count SD is  737 

increased by 2 BΔ|  NB S

B

t
t

.  Next, the MDC is calculated by dividing SD by the efficiency and  738 

multiplying the result by 1+ AΔ| .  The conservative approach presented in NRC 1984 treats  739 

740 

741 

742 

random errors and systematic errors differently to ensure that the MDC for a measurement 

process is unlikely to be consistently underestimated, which is an important consideration if it is 

required by regulation or contract to achieve a specified MDC. 
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G.4 Calculation of the Minimum Quantifiable Concentration 743 

744 Table G.5  Notation for Section G.4 

Symbol Definition Formula or reference Type 
Qk  Multiple of the standard 

deviation defining yQ, 
usually chosen to be 10. 

2 ( | )Q
Q

Q

y Y y
k

y
σ =

=
 Chosen during 

DQO process 

2 ( | )Qy Y yσ =  The variance of the 
estimator y given the true 
concentration Y equals yQ. 

 Theoretical 

Qy  Minimum quantifiable 
concentration (MQC) 

The concentration at which the measurement 
process gives results with a specified relative 
standard deviation 1/kQ, where is usually chosen 
to be 10. 

Qk

Theoretical 

Calculation of the MQC requires that one be able to estimate the standard deviation for the result 

of a hypothetical measurement performed on a sample with a specified radionuclide 

concentration.  The MQC is defined symbolically as the value that satisfies the relation: 

745 

746 

Qy747 

 2 ( | )Q Q Qy k y Y yσ= =748 

749 

750 

2751 

752 

753 

754 

755 

756 

 (G-37) 

Where the specified relative standard deviation of is 1/  (usually chosen to be 10% so that 

= 10).  is the variance of the estimator y given the true concentration Y equals 

.  If the function  has a simple form, it may be possible to solve the above 

equation for using only algebraic manipulation.  Otherwise, fixed-point iteration, or other 

more general approaches, may be used, as discussed in MARLAP Section 20.4.3.   

Qy Qk

Qk 2 ( | )Qy Y yσ =

Qy ( | )Qy Y yσ =

Qy

When Poisson counting statistics are assumed, and the mathematical model for the radionuclide 

concentration is Y = S /ε, where S is the net count, S / tS  is the net count rate and ε is the 

efficiency of the measurement, the above equation may be solved for to obtain: Qy

 
2 2 2

ˆ 2 2
2 2 2

ˆ

4(1 )
1 1 1 ( )

2 (1 )
Q Q S
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ε φ
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758 

759 

Where: 

tS is the count time for the source, s, 

tB is the count time for the background, s, B760 

RB is the mean background count rate, s , B761 

762 

-1

RI is the mean interference count rate, s-1, 

)( IR
)

σ  is the standard deviation of the measured interference count rate, s-1, and 763 

2
ε̂φ  is the relative variance of the measured efficiency, ε̂ . 764 

765 If the efficiency ε may vary, then a conservative value, such as the 0.05-quantile ε0.05, should be 

substituted forε in the formula.  Note that 2
ε̂φ  denotes only the relative variance of ε̂  due to 

subsampling and measurement error – it does not include any variance of the efficiency ε itself 

(see discussion in Section G.2). 

766 

767 

768 

2 2Note that equation G-38 defines the MQC only if ˆ1 Qk εφ−  > 0.  If 2 2
ˆ1 Qk εφ−  ≤ 0, the MQC is 

infinite, because there is no concentration at which the relative standard deviation of y fails to 

exceed 1 / .  In particular, if the relative standard deviation of the measured efficiency 

769 

770 

Qk ε̂  

exceeds 1 / , then 

771 

Qk 2 2
ˆ1 Qk εφ−  < 0 and the MQC is infinite. 772 

773 If there are no interferences, equation G-37 simplifies to: 
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2 2 2
ˆ

4(1 )
1 1 1

2 (1 )
Q Q S

Q B
S Q Q B

k k ty R
t k k t

ε

ε

φ
ε φ

⎛ ⎞⎛ ⎞− ⎛ ⎞⎜ ⎟= + + ⎜ ⎜ ⎟⎜− ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
St + ⎟⎟774  (G-39) 

Example 8:  Consider the scenario of Example 5, where tB = 6,000 s, tS = 3,000 s, and 775 

RB ≈ 0.018 s-1.  Suppose the measurement model is ( /S B S B

S

N N t tY
t ε

)−
=  776 

Where: 777 

Y is the specific activity of the radionuclide in the sample and 778 
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ε the counting efficiency . 2(counts per second)/(Bq/cm )779 

780 Assume: 

The source count time, tS, has negligible variability, 781 

the counting efficiency has mean 0.42 and a 5% relative combined standard uncertainty, 782 

783 and 

SD = 32.3 net counts. SD / tS =32.3/3000 is the net count rate. 784 

The counting efficiency ε = 0.42 785 

The mean minimum detectable concentration is 232.3 0.0256 Bq/cm . 
(3000)(0.42)

D
D

S

Sy
t ε

= = =  786 

Also assume: 787 

Qk 10=  788 

ε̂φ 05.0=  789 

2
ε̂φ

20.05=  790 

2 2 2
ˆ1 1 100 (0.05 ) 0.75Qk εφ− = − × = , and 791 

792 there are no interferences so that equation G-38 can be used. 

Note that if the counting efficiency has mean 0.42 and a 10% relative standard uncertainty as in 793 

Example 11, then  and the MQC would be infinite.  Therefore it was 2 2 2
ˆ1 1 100 (0.10 ) 0Qk εφ− = − × =794 

necessary to change the procedure for evaluating the efficiency in this example so that the 795 

796 relative combined standard uncertainty could be reduced. In this example it is assumed to be 5%. 

The MQC can be calculated as: 797 

2 2 2
ˆ

2 2 2
ˆ

4(1 )
1 1 1 0

2 (1 )
Q Q S

Q B
S Q Q B

k k ty R
t k k t

ε

ε

φ
ε φ

⎛ ⎞⎛ ⎞− ⎛ ⎞⎜ ⎟= + + +⎜ ⎟⎜ ⎟⎜ ⎟− ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
St +  798 

1100 4 (0.75) (3000 s)1 1 (0.018 s )(3000 s) 1 0
2 (3000)(0.42)(0.75) 100 (6000 s)Qy −

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
+  799 
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20.151 Bq/cm=  800 

As a check, yQ can be calculated in a different way.  If is the MQC and  = 10, then the Qy Qk801 

relative combined standard uncertainty of a measurement of concentration yQ is 10%.  The 802 

803 procedure described in Section 5.6 can be used to predict the combined standard uncertainty of a 

measurement made on a hypothetical sample whose concentration is exactly = 0.151 Bq/cmQy 2. 804 

The measurement model is ( /S B S B

S

N N t tY
t ε

−
=

) . 805 

Recall from Section G.2.1.6 that if y = 1 2

1 2

( , , , )n

m

f x x x
z z z

K

K
, where f is some specified function of 806 

x1,x2,…,xn, all the zi are nonzero, and all the input estimates are uncorrelated that the combined 807 

808 standard uncertainty may be calculated using Equation G-16: 

2 22 2
2 21 2 1 2

2 2 2
1 2 1 2

( ( , , , )) ( )( ) ( )( ) c n
c

m m

u f x x x u zu z u zu y y
z z z z z z

⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠

K
K

K
m  809 

Substituting 810 

 y = Y  811 

812 1 2( , , , )nf x x xK = ( , , , )S B S BN N t t ( / ) /S B S B SN N t t t= −   f

1z = ε, and 813 

) )2 ( ( / ) /c S B S B Su N N t t t−  =    =  2 2( / ) (( / ) /c S S c B S B Su N t u N t t t+
2 2

2

( ) ( / ) (c S S B c B

S

u N t t u N
t

+ 2 )
  = 814 

2 2 2 2

2

( / )S B S B

S

N N t t
t

+
= 

2 2

2

( / )S B S B

S

N N t t
t

+
 815 

Results in:  816 

2 2 2
2 2

2 2 2

( / ) ( )( ) S B S B
c

S

N N t t uu Y Y
t

ε
ε ε

⎛ ⎞+
= + ⎜ ⎟

⎝ ⎠
 or 817 
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2 2 2
2

2 2 2

( / ) ( )( ) S B S B
c

S

N N t t uu Y Y
t

ε
ε ε

⎛ ⎞+
= + ⎜ ⎟

⎝ ⎠
 818 

Inserting the values  819 

Y= = 0.151 Bq/cmQy 2820 

tB = 6,000 s 821 B

tS = 3,000 s 822 

823 ε = 0.42  2(counts per second)/(Bq/cm )

108)s 000,3)(s 018.0( 1 === −
BBB tRN  and  824 

1(0.151 Bq)(3000 s)(0.42) (0.018 s )(3,000 s) 244.26S Q S B BN x t R tε −= + = + =  825 

826 yields 

2 2
2 2

2 2

244.26 (108)(3,000) /(6,000)( ) (0.151) (0.05 ) 0.0151 Bq/cm
(3000) (0.42)cu Y +

= + 2=  827 

Thus, the uncertainty at = 0.151 is 0.0151 and the relative uncertainty is 0.1, so is verified Qy Qy828 

to be the MQC. 829 

As in example 7, we adjust for the (now) 5% relative combined standard uncertainty in the 830 

counting efficiency.  The uncertainty is (0.05) × (0.42) = 0.02142.  Assuming that the efficiency 831 

is normally distributed, the lower 5th percentile is (0.42) - (1.645)(0.021) = 0.385.  Therefore a 832 

conservative estimate of the efficiency is ε = 0.385 and a conservative estimate of the minimum 833 

detectable concentration is: 2(0.151)(0.42) 0.165 Bq/cm . 
0.385Qy = =  834 

MARSAME G-42 December 2006 


	APPENDIX G  ESTABLISHING MQOS FOR MEASUREMENT UNCERTAINTY, MDCs AND MQCs
	G.1 Establishing MQOs 
	G.1.1 Developing a Requirement for Measurement Method Uncertainty For MARSSIM-Type surveys
	G.1.2 Developing a Requirement for Measurement Method Uncertainty When Decisions Are to Be Made About Individual Items

	 
	G.2 Uncertainty Calculation
	G.2.1 Procedures for Evaluating Uncertainty
	G.2.1.1 Identify the Measurand, Y, and all the Input Quantities, Xi, for the Mathematical Model
	G.2.1.2 Determine an Estimate, xi, of the Value of Each Input Quantity, Xi 
	G.2.1.3 Evaluate the Standard Uncertainty, u(xi), for Each Input Estimate, xi, Using a Type A Method, a Type B Method, or a Combination of Both 
	G.2.1.4 Evaluate the Covariances, u(xi,xj), for all Pairs of Input Estimates with Potentially Significant Correlations
	G.2.1.5 Calculate the Estimate, y, of the Measurand from the Relationship y = f(x1,x2,…,xN)
	G.2.1.6 Determine the Combined Standard Uncertainty, uc(y), of the Estimate, y
	G.2.1.7 Optionally Multiply uc(y) by a Coverage Factor k to Obtain the Expanded Uncertainty U such that the Interval [y - U, y + U] can be Expected to Contain the Value of the Measurand with a Specified Probability
	G.2.1.8 Report the Result as y ± U with the Unit of Measurement

	G.2.2 Examples of Some Parameters that Contribute to Uncertainty
	G.2.2.1 Instrument Background
	G.2.2.2 Counting Efficiency
	G.2.2.3 Digital Displays and Rounding

	G.2.3 Example Uncertainty Calculation
	G.2.3.1 Model Equation and Sensitivity Coefficients
	G.2.3.2 Uncertainty Components
	G.2.3.3 Uncertainty Budget
	G.2.3.4 Reported Result

	G.3.1 Critical Value
	G.3.2 Minimum Detectable Concentration
	G.3.3 Calculation of the Critical Value
	G.3.4 Calculation of the Minimum Detectable Value of the Net Instrument Signal
	G.3.5 Calculation of the Minimum Detectable Concentration



